Microengineered physiological biomimicry: organs-on-chips.
نویسندگان
چکیده
Microscale engineering technologies provide unprecedented opportunities to create cell culture microenvironments that go beyond current three-dimensional in vitro models by recapitulating the critical tissue-tissue interfaces, spatiotemporal chemical gradients, and dynamic mechanical microenvironments of living organs. Here we review recent advances in this field made over the past two years that are focused on the development of 'Organs-on-Chips' in which living cells are cultured within microfluidic devices that have been microengineered to reconstitute tissue arrangements observed in living organs in order to study physiology in an organ-specific context and to develop specialized in vitro disease models. We discuss the potential of organs-on-chips as alternatives to conventional cell culture models and animal testing for pharmaceutical and toxicology applications. We also explore challenges that lie ahead if this field is to fulfil its promise to transform the future of drug development and chemical safety testing.
منابع مشابه
Microfluidic organ-on-chip technology for blood-brain barrier research
Organs-on-chips are a new class of microengineered laboratory models that combine several of the advantages of current in vivo and in vitro models. In this review, we summarize the advances that have been made in the development of organ-on-chip models of the blood-brain barrier (BBBs-on-chips) and the challenges that are still ahead. The BBB is formed by specialized endothelial cells and separ...
متن کاملOrganomimetic Microsystems Technologies
Microscale engineering technologies derived from the semiconductor and microelectronics industries provide new opportunities in biology to create and precisely control threedimensional cell culture microenvironments in a physiologically relevant and organ-specific context. Here we review recent advances in the development of ‘Organs-on-Chips’ in which microsystems technologies have been applied...
متن کامل3D Printing of Organs-On-Chips
Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell...
متن کاملFrom 3D cell culture to organs-on-chips.
3D cell-culture models have recently garnered great attention because they often promote levels of cell differentiation and tissue organization not possible in conventional 2D culture systems. We review new advances in 3D culture that leverage microfabrication technologies from the microchip industry and microfluidics approaches to create cell-culture microenvironments that both support tissue ...
متن کاملPriming nanoparticle-guided diagnostics and therapeutics towards human organs-on-chips microphysiological system
Nanotechnology and bioengineering have converged over the past decades, by which the application of multi-functional nanoparticles (NPs) has been emerged in clinical and biomedical fields. The NPs primed to detect disease-specific biomarkers or to deliver biopharmaceutical compounds have beena validated in conventional in vitro culture models including two dimensional (2D) cell cultures or 3D o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 12 12 شماره
صفحات -
تاریخ انتشار 2012